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In 1998, a young University of Michigan
mathematician named Thomas Hales solved
a nearly 4-century-old problem called the
Kepler conjecture. The task was to prove that
the standard grocery-store arrangement of
oranges is, in fact, the densest way to pack
spheres together. The editor of Annals of
Mathematics, one of the most prestigious
journals in mathematics, invited him to sub-
mit his proof to Annals. Neither of them was
prepared for what happened next.

Over a period of 4 years, a team of 12 ref-
erees wrestled with the lengthy paper and
eventually raised a white flag. They informed
the editor that they were only “99 percent”
certain that it was correct. In particular, they
could not vouch for the validity of the lengthy
computer calculations that were essential to
Hales’s proof. The editor took the unprece-
dented step of publishing the article with a
disclaimer that it could not be absolutely ver-
ified (Science, 7 March 2003, p. 1513).

It is a scenario that has repeated itself, with
variations, several times in recent years: A
high-prof ile problem is solved with an
extraordinarily long and difficult megaproof,
sometimes relying heavily on computer cal-
culation and often leaving a miasma of doubt
behind it. In 1976, the Four Color Theorem
started the trend, with a proof based on com-
puter calculations so lengthy that no human
could hope to follow them. The classification
of finite simple groups, a 10,000-page multi-
author project, was completed (sort of) in
1980 but had to be recompleted last year.
“We’ve arrived at a strange place in mathe-
matics,” says David Goldschmidt of the Insti-
tute for Defense Analyses in Alexandria, Vir-
ginia, one of the collaborators on the finite
simple group proof. “When is a proof really a
proof? There’s no absolute standard.” Gold-
schmidt thinks the traditional criterion—
review by a referee (or team of them)—
breaks down when a paper reaches hundreds
or thousands of pages.

The computer—which at first sight seems
to be part of the problem—may also be the
solution. In the past few months, software
packages called “proof assistants,” which go
through every step of a carefully written argu-
ment and check that it follows from the
axioms of mathematics, have served notice
that they are no longer toys. Last fall, Jeremy
Avigad, a professor of philosophy at Carnegie

Mellon University, used a computer assistant
called Isabelle to verify the Prime Number
Theorem, which (roughly speaking)
describes the probability that a randomly cho-
sen number in any interval is prime. And in
December, Georges Gonthier, a computer sci-
entist at Microsoft Research Cambridge,
announced a successful verification of the
proof of the Four Color Theorem, using a
proof assistant called Coq. “It’s finally getting
to the stage where you can do serious things
with these programs,” says Avigad.

Even Hales is getting into the action.
Over the past 2 years, he has taught himself
to use an assistant called HOL Light. In Jan-
uary, he became the first person to complete
a computer verification of the Jordan Curve

Theorem, f irst published in 1905, which
says that any closed curve drawn in the plane
without crossing itself separates the plane
into two pieces.

For Hales, the motivation is obvious: He
hopes, eventually, to vindicate his proof of the
Kepler conjecture. In fact, three graduate stu-
dents in Europe (not Hales’s own) are already

at work on separate parts of this
project, two using Isabelle and one
using Coq. Hales expects them to
finish in about 7 years.

But Hales thinks that computer
verif iers have implications far
beyond the Kepler conjecture.
“Suppose you could check a page a
day,” he says. “At that point it would
make sense to devote the resources
to put 100,000 pages of mathemat-
ics into one of these systems. Then
the mathematical landscape is
entirely changed.” At present, com-
puter assistants still take a lot of
time to puzzle through some facts
that even an advanced undergradu-
ate would know or be able to figure
out. With a large enough knowl-

edge base, that particular time sink could be
eliminated, and the programs might enable
mathematicians to work more efficiently.
“My own experience is that you spend a long
time going over and going over a proof, mak-
ing sure you haven’t missed anything,” says
Carlos Simpson, an algebraic geometer and
computer scientist at the University of Nice in
France. “With the computer, once it’s proved,
it’s proved. You only have to do it once, and
the computer makes sure you get all the
details.” 

In fact, computer proof assistants could
change the whole concept of proof. Ever
since Euclid, mathematical proofs have
served a dual purpose: certifying that a
statement is true, and explaining why it is

What in the Name of Euclid Is
Going On Here?
Computer assistants may help mathematicians dot the i’s and cross the t’s of proofs so
complex that they defy human comprehension
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Mapping the way. Georges Gonthier’s computer verified 
billions of calculations on “hypermaps” like the one shown.

Have a Coq and a Smile
Why would hundreds of computer scientists devote more than 30 years to developing
mathematical proof assistants that most mathematicians don’t even want? The answer is
that they are chasing an even more elusive grail: self-checking computer code.

In a sense, the statement “this program (or chip, or operating system) performs task x
correctly” is a mathematical theorem, and programmers would love to have that kind of
certainty. “Currently, people who have experience with programming ‘know’ that serious
programs without bugs are impossible,” Freek Wiedijk and Henk Barendregt, computer sci-
entists at the University of Nijmegen in the Netherlands, wrote in 2003.“However, we think
that eventually the technology of computer mathematics … will change this perception.”

Already, leading chip manufacturers use computer proof assistants to make sure their
circuit designs are correct. Advanced Micro Devices uses a proof checker called ACL2, and
Intel uses HOL Light. “When the division algorithm turned out to be wrong on the Pentium
chip, that was a real wake-up call to Intel,” says John Harrison, who designed HOL Light and
was subsequently hired as a senior software engineer by Intel. –D.M.
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true. Now those two epistemological func-
tions may be divorced. In the future, the
computer assistant may take care of the cer-
tification and leave the mathematician to
look for an explanation that humans can
understand. “Just because a proof is
explanatory doesn’t mean it’s certain,” says
Harvey Friedman, a logician at Ohio State
University in Columbus. “Just because it is
certain doesn’t mean it’s explanatory. They
are two separate dimensions.”

So far, Hales, Simpson, and Friedman are
part of an extremely small minority: mathe-
maticians who have taken the trouble to learn
about proof assistants. “Mathematicians
don’t know about [computer proof verifica-
tion], they’re not interested in it, and they

don’t believe it,” says Freek Wiedijk, a com-
puter scientist at the University of Nijmegen
in the Netherlands who specializes in proof
verification. Simpson says much of the mis-
trust may stem from a misimpression that
computerized proof checkers are trying to
automate mathematical creativity.

In fact, an assistant can no more prove the
Four Color Theorem than an online thesaurus
can write Hamlet. In a typical session with a
proof verifier such as Isabelle or Coq, the
mathematician enters the hypotheses at the
top of the computer screen and the “proof
obligation”—the conclusion—at the bottom.
She decides on a “tactic” to simplify the proof
obligation—for example, subdividing it into
simpler cases, performing a calculation, or
applying a previously known theorem. Each
time the user enters a tactic, the computer
program executes it and updates the proof
obligation. When there are no more obliga-
tions left, the proof is verified.

One stumbling block is that published
proofs never specify every step. Every math
student is familiar with the dreaded words,

“it is obvious that …” To the computer,
nothing is obvious. It is up to the user to
break the “obvious” step down into subtasks
that the computer can check. Diagrams are
particularly troublesome; the user must
somehow parse the pictorial information
into allowable tactics.

All in all, people who have used proof ver-
ifiers say they can formalize about a page of
textbook mathematics in a week. Avigad says
he reached a top speed of a page a day while
working on the Prime Number Theorem—
close to the break-even point at which it will
be worth mathematicians’ time. “When it
becomes not too much harder to formally
verify a proof than to write it up carefully, it
starts looking like a win,” he says.

Probably the most
remarkable accom-
plishment so far by a
computer proof assis-
tant is Gonthier’s

recently completed verification of the Four
Color Theorem. This theorem began as a
conjecture in 1852, when a graduate student
at University College London named Francis
Guthrie asked his professor Augustus
DeMorgan if he could prove that any map
can be colored with four colors in such a way
that no two adjacent countries have the same
color. After more than a century of unsuc-
cessful attempts, some by eminent mathe-
maticians, two computer scientists, Kenneth
Appel and Wolfgang Haken, finally proved it
in 1976. Their computation-intensive argu-
ment raised an immediate furor. “Mathe-
maticians over 40 years old couldn’t be con-
vinced that a proof by computer was correct,
and those under 40 couldn’t be convinced
that a proof with 700 pages of hand calcula-
tions was correct,” jokes Robin Wilson, a
graph theorist at the Open University in Mil-
ton Keynes, U.K. Enough questions
remained about its validity that another team
of graph theorists, led by Paul Seymour of
Princeton University and Neil Robertson of
Ohio State University, published a revised

proof in 1995. Even this streamlined proof
relies on a case-by-case analysis of more
than a billion different maps, far more work
than a human mathematician could do in a
lifetime. The computer did it in 3 hours.

Crunching through special cases also
played a large role in checking the proof,
Gonthier says. “From the point of view of
someone using a formal computation system,
those are really the easy parts. The hard part,
in this case, was finding formal definitions
that captured correctly the intuitions behind
graph theory.” Gonthier had to revamp Sey-
mour and Robertson’s approach considerably,
so that the proof assistant would understand
what elementary ideas such as “the next edge
on the left” meant. In his final proof script, he
estimates that 19,000 lines came directly out
of the Robertson and Seymour paper, and
19,000 lines were his own work. (Another
22,000 lines are white space, comments, 
and “infrastructure.”)

Specialists in computer verification give
Gonthier’s work very high marks. “That guy
is amazing,” says Wiedijk. “I can’t compete
with this kind of genius.” Hales calls it “a
magnificent piece of work. What this means
is that the proof is finally self-checking. You
don’t have to worry about whether the pro-
grammers introduced bugs into the computer
code.” On the other hand, every graph theorist
contacted for this article either had not heard
of Gonthier’s work or remained skeptical
about it. “I have no serious doubts that com-
puters have done their part flawlessly,” says
Bojan Mohar, a graph theorist at the Univer-
sity of Ljubljana, Slovenia. “[But] I cannot
confirm that Gonthier has made the correct
translation of the [human] proof into com-
puter form.” Others doubt the machines
themselves. Coq may tell them that
Gonthier’s code is correct, but why should
they trust Coq?

“It’s reasonable to say [Coq’s code] has
been verif ied experimentally,” Gonthier
says. Coq is a program that has been devel-
oped (at INRIA in Paris) over a period of 20
years, boasts a community of about 100
active users, has source code that is open
for inspection, and runs on several different
computers and operating systems. Besides,
he argues, “even traditional mathematical
proofs use physical artifacts. You’re relying
on the fact that when you flip back to a pre-
vious page, the ink doesn’t change. Your
day-to-day experience is that the ink does-
n’t change. Similarly, our experience with
computers is that once given a consistent
set of instructions, they compute consis-
tently. It’s just hard to give them a consis-
tent set. Proof-assistant technology makes
sure that you do.”

–DANAMACKENZIE

Dana Mackenzie is a freelance writer in Santa Cruz,
California.
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Different languages. Machine proofs (right) can look very different from “human” versions.
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