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Overfishingis the primary cause of marine defaunation, yet declines inand increasing
extinctionrisks of individual species are difficult to measure, particularly for the
largest predators found in the high seas' . Here we calculate two well-established
indicators to track progress towards Aichi Biodiversity Targets and Sustainable
Development Goals**: the Living Planet Index (a measure of changes in abundance
aggregated from 57 abundance time-series datasets for 18 oceanic shark and ray
species) and the Red List Index (a measure of change in extinction risk calculated for
all 31 oceanic species of sharks and rays). We find that, since 1970, the global
abundance of oceanic sharks and rays has declined by 71% owing to an 18-fold increase
inrelative fishing pressure. This depletion has increased the global extinction risk to
the point at which three-quarters of the species comprising this functionally
important assemblage are threatened with extinction. Strict prohibitions and
precautionary science-based catch limits are urgently needed to avert population
collapse®’, avoid the disruption of ecological functions and promote species

recovery®’,

Over the United Nations ‘Decade of Biodiversity’ from 2011t0 2020, gov-
ernments committed to improve human wellbeing and food security
by safeguarding ecosystem services and halting biodiversity loss'®. The
Sustainable Development Goals, adopted by all member states of the
United Nations, and the 20 Aichi Biodiversity Targets of the Convention
onBiological Diversity provide aframework to track progress towards
the 2020 deadline**™°, Seafood sustainability is anintegral part of these
commitments, and wild-capture fisheries are essential nutritional and
economic resources for millions of people globally™'2, However, it is
difficult to assess changes in the state of biodiversity and ecosystem
structure, function and services beneath the ocean surface®.
Elasmobranchs (sharks and rays, hereafter ‘sharks’) offer a unique
window into the state of the oceans. Sharks are one of the most evolu-
tionarily distinct and functionally diverse vertebrate radiations'**>. The
first global assessment of the International Union for Conservation of
Nature (IUCN) estimated that one-quarter of sharks were threatened
with extinction (classified as critically endangered, endangered or
vulnerable according to the criteria of the [IUCN Red List of Threatened
Species)'®, making sharks the most threatened vertebrate lineage after
amphibians'® 8, The long generation times and low intrinsic population

growth rates of many sharks make theminherently susceptible to over-
exploitation'”*. Globally, sharks are landed for their meat, fins, gill
plates and liver 0il?** and catches increased to an estimated peak of
63-273 million individuals in the early 2000s before declining owing
to overfishing®. The first warnings of the dire status of sharks were
based on boom-and-bust catch patterns and the increasing interna-
tional trade in shark fins**?*, Subsequently, serious declines in many
oceanic and coastal shark populations were documented, both in the
Gulf of Mexico and Northwest Atlantic?**, and also in South Africa*
and Australia”. Shark population assessments for many other regions
have since become increasingly robust®**?°, Until now, however, these
have not been synthesized to provide a global perspective on shark
population trends.

Here we calculate for oceanic sharks two biodiversity indicators
established by the Convention on Biological Diversity: the Living
Planet Index (LPI)**° on global population changes since 1970 and the
Red List Index (RLI)**, which tracks changes in the relative extinction
risk of taxa. These indicators quantify progress towards Aichi Biodi-
versity Targets 6 (manage marine resources for sustainability) and 12
(preventextinction), and Sustainable Development Goal 14 (conserve
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andsustainably use the oceans). First, we used a Bayesian state-space
framework®>*® to estimate trends in the relative abundance of 18 spe-
cies from 57 time-series datasets compiled and reviewed at an expert
workshop convened by the IUCN Species Survival Commission’s Shark
Specialist Group (IUCN SSCSSG). Using these trends, we calculated the
global LPIfor oceanic sharks from the reference year 1970 (which was
set at1) to 2018—and then extrapolated each time-series to 2020 to
encompassthe AichiBiodiversity Target assessment year—by hierarchi-
cally aggregating the annual rates of change from each time-series fora
species by region, then globally (Extended DataFigs.1,2a). Second, we
combined aretrospective Red List assessment (1980) with two recent
assessments (around 2005 and 2018) from the IUCN Red List for all 31
species of oceanic sharks to build the RLI (Extended Data Fig. 1). The
RLI provides standardized assessments of the extinction risk of each
species, which are comparable across taxa, and is particularly useful
when robust trend data are missing. Comparing the RLI over time,
among different taxa, reveals the common trends in extinction risk
among groups, despite differences in habitat, life history and threats.
Such cross-taxon comparisons are useful to ensure the appropriate
allocation of global conservation resources across terrestrial, fresh-
water and marine biomes.

Finally, we develop threelines of evidence to attribute the decreasing
abundance (shownby the LPI) and increasing extinction risk (shown by
the RLI) of oceanic sharks to overfishing: (1) increasing relative fishing
pressure (RFP) over time (measured as changes in catch rates relative
to the changes in the LPI); (2) an increasing proportion, over time, of
oceanic sharks that are overfished and below biomass or abundance
levels that could produce the maximum sustainable yield (the equi-
librium state of the exploited population sustaining the greatest yield
(thatis, catch rate) over long time periods**); and (3) the near-absence
of important threats other than fishing reported in the IUCN Red List
assessment of each species.

Declining abundance index

We find that, globally, the abundance of oceanic sharks declined by
71.1% (95% credible interval, 63.2-78.4%) (Fig. 1) from 1970 to 2018,
at a steady rate averaging 18.2% per decade (Extended Data Fig. 2c).
Over the half-century from 1970 to 2020, the projected LPI estimates
that abundance declined by 70.1% (95% credible interval, 62.8-77.2%)
(Extended Data Fig. 2b). The declining trend in the LPI trajectory is
robust to the exclusion of any individual species (Extended Data Fig. 3).
Thereare three reasons why the true abundance trend index values are
likely tobe lower (and calculated percentage declines worse) than esti-
mated here (Supplementary Discussion1): (1) fishing levels were already
unsustainable half a century ago; (2) unreported catches (including
discards) are notincluded in our time-series; and (3) traditional stock
assessments could underestimate fishing mortality.

The global trend index can be disaggregated into trajectories for
each ocean and species, as well as for functional groups with similar
ecological or life-history traits. In the Atlantic Ocean, following along
period of decline since 1970, abundances began to stabilize at low levels
after 2000 (overall decline 0f 46.1%; 95% credible interval, 30.7-61.1%)
(Fig. 2a). In the Pacific Ocean, abundances decreased steeply before
1990, and then declined at a slower rate (overall decline of 67.0%; 95%
credibleinterval, 53.6-79.4%) (Fig. 2c). Inthe Indian Ocean, shark abun-
dances have declined steeply since 1970 (overall decline of 84.7%; 95%
credible interval, 75.9-92.1%) (Fig. 2b). Despite more resilient life his-
tories, tropical sharks declined more steeply than temperate species
(overalldeclines of 87.8%; 95% credible interval, 79.8-94.3% compared
with 40.9%; 95% credible interval, 30.4-50.5%) (Fig. 2d). Overfishing
of sharks followed a classic pattern of serial depletion, starting with
thelargest species, which dropped steeply before the 1980s, followed
by declines in medium-sized species and eventually relatively small
species (including some devil rays, Mobula spp.) (Fig. 2e). Long-lived,
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Fig.1|Global LPIfor 18 oceanic sharks estimated from1970 to 2018. The
global percentage of decline was calculated from the posteriors of the LPI
around the final assessment year relative to the posteriors for 1970. The black
line denotes the mean, the white lines the 95% credible intervals and the grey
lineseachiteration.

late-maturing speciesinitially declined faster than those with shorter
generation times, but two of these species (white shark (Carcharodon
carcharias) and porbeagle (Lamna nasus)) have shown signs of popula-
tionrebuilding since the early 2000s (Fig. 2fand Extended Data Fig. 7).
All species, apart from the smooth hammerhead (Sphyrna zygaena),
decreased in abundance over the past half-century (Fig. 2g). Devil
ray abundance has declined by at least 85% in the past 15 years in the
Southwest Indian Ocean (Fig. 2g). Although sparse, the available data
for devil rays are representative of the repeated, rapid depletions and
local extinctions suspected to have occurred because of overfishing
thataredriven by target fisheriesin many parts of their historical range
(Supplementary Discussion 2).

Increasing extinction risk

For all 31 oceanic shark species, the risk of extinction, indicated by
IUCN Red List category, has substantially increased since 1980. The RLI
declined from a retrospective estimate of 0.86 (range, 0.74-0.90) in
198010 0.56in 2018, comparable to cycads (palm-like plants), the most
threatened group of completely assessed species on Earth® (Fig. 3a).
We estimate that in 1980, two-thirds (n =20) of oceanic shark species
fellinto the IUCN Red List category of least concern, and only nine were
threatened. The basking shark (Cetorhinus maximus) was the only
species that was retrospectively classified as endangered. More than
three-quarters (n =24) of these species are threatened now based on
steep population reductions (IUCN Red List criterion A). Some formerly
abundant, wide-ranging sharks have declined so steeply that they are
now classified in the two highest IUCN Red List threatened categories:
three are critically endangered (oceanic whitetip shark (Carcharhi-
nus longimanus), scalloped hammerhead (Sphyrna lewini) and great
hammerhead (Sphyrna mokarran)), and four are endangered (pelagic
thresher (Alopias pelagicus), dusky shark (Carcharhinus obscurus),
shortfin mako (Isurus oxyrinchus) and longfin mako (/surus paucus))
(Fig. 3b). In total, half (16 out of 31) of oceanic shark species are now
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critically endangered (n = 3; 280% population reduction over three
generations) or endangered (n=13; 50-79% population reduction).

Overfishing is the main threat to oceanic sharks

We attribute the declinesin populations and increased extinction risk
of oceanicsharksto overfishing based on three lines of evidence. First,
there has been a more than twofold increase in fishing with longlines
and seine nets, the gears that catch the most oceanic sharks, during
the past half-century (Fig. 4a; data corrected for technological creep,
see Supplementary Methods 1). Concomitantly, oceanic shark catch
rateshaveincreased threefold since 1970 (Fig. 4a), resulting in an 18-fold
increase in RFP (Fig. 4b). This correlation suggests that fishing drove
declinesinthe abundances of sharks with anotable breakpointin1990

Year

generation time; g, species (the time-series for each species are shownin
Extended DataFigs.4-8).Lines denote the meanandshaded regions the 95%
credibleintervals.

that we hypothesize coincides with theincreasing retention of sharks to
meet new market demands (specifically for fins)* (Fig. 4c). Second, the
role of fisheries in driving the declines is thoroughly addressed in the
growing number of robust fisheries stock assessments (Extended Data
Fig.9b). The declining LPlis consistent withanincreasing proportion
of populations and species that have been assessed to be overfished
over time (21%) (Fig.4d); 6 of the 8 assessed species and more than half
ofthe populations (9 of15) are below the biomass or abundance levels
that could produce the maximum sustainable yield (Extended Data
Fig.9c). Third, we compiled the causes of declines reportedin the Red
List assessments, which are classified into 11 categories ranging from
‘human intrusions and disturbance’, to ‘climate and severe weathers,
Although there are numerous pressures acting on sharks, every Red
List assessment for the 31 oceanic sharks concluded that the major
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least concern (thatis, notexpected tobecomeextinctin the near future),
whereasaRLIvalue of Oindicates that all species have gone extinct. b, Change
inthe Red List status of oceanic sharks from 1980 to 2018. CR, critically
endangered; EN, endangered; VU, vulnerable; NT, near threatened; LC, least
concern.
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threat was ‘biological resource use’ and, more specifically, ‘fishing and
harvestingaquaticresources’. Other threats are reported for only two
species (Extended Data Fig. 10).

Discussion

We document an alarming, ongoing, worldwide decline in oceanic
shark populations across the world’s largest ecosystem over the past
half-century, resulting in an unprecedented increase in the risk of
extinction of these species. A marked increase in relative fishing pres-
sure is mirrored by the general consistency in the rate and extent of
declines across species with differing body sizes and generation times.
The low reproductive output of these slow-growing species is clearly
no match for theintense fishing pressure that they are currently under.

Overfishing of oceanic shark populations has far outpaced the imple-
mentation of fisheries management and trade regulations®. Despite
greatimprovementsin conservation commitmentsinrecent decades,
relatively few countriesimpose catch limits specific to oceanic sharks,
and fewer still can demonstrate population rebuilding or sustainable
fisheries for these species. Obligations under international wildlife
treaties’ to prohibit retention or restrict international trade of select
species have not yet been implemented effectively*®. The world’s four
major regional fishery management organizations focused on tunas
have, tovarying degrees, prohibited the retention of inherently sensi-
tive oceanic shark species thatare also of relatively low value to the asso-
ciated pelagic fisheries. However, tuna regional fishery management
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organizations fishing limits for more commercially important sharks
have been largely inadequate with respect to heeding scientific advice
and using ecosystem-based fisheries management** (Supplementary
Discussion 3).

There are some encouraging findings. We note that the white shark
historically declined by an estimated 70% worldwide over the past
half-century, butis nowrecoveringin several regions, aided by retention
bans**. Hammerhead shark populations are rebuilding in the North-
west Atlantic, owing to strictly enforced quotas throughout their US
range. The blue shark has declined less than other species, despite being
reported to be at significantly greater risk due toits high distributional
overlap with heavily fished areas**. This is probably due to its relatively
high reproductive rate (compared to other oceanic sharks), but nev-
ertheless its management is warranted on a global scale as market
interest and targeted fishing increase. It is possible to reverse shark
population declines, even for slow-growing species, if precautionary,
science-based management isimplemented throughout the range of
the species®* before depletion reaches a point of no return.

We can use IUCN Red List status and trends as a heuristic to guide
the conservation priorities of countries with limited capacity to assess,
manage and conserve oceanic species. This guidance will be less rel-
evant to nations with the capacity to undertake stock assessments
and ensure compliance with management?, reflecting the fact that
the global Red List status and local status of a species may differ. It has
been previously recommended that sharks assessed globally as near
threatened or even some assessed as vulnerable may still be able to



sustainmodest levels of fishing, if managed immediately and carefully
throughout their range™. Species classified as critically endangered
or endangered cannot support fisheries. In these cases, policy rec-
ommendations based on stock assessments or on the global Red List
status will be congruent*é; strict measures to prohibit landings and
minimize bycatch mortality (by avoiding hotspots, modifying gear
and improvingrelease practices) are urgently needed to halt declines
and rebuild populations.

The ecosystem consequences of the declinesin oceanic shark popula-
tions are uncertain because of the complexity and scale of the marine
food webs*. Nevertheless, the profound effects of depleting predatory
species are becoming apparent. For example, the decline in preda-
tory sharks and tunas is associated with increases in mesopredators,
including teleosts and smaller-bodied shark species*®, indicating that
fundamental functional changes to these marine food webs are occur-
ring®. Of further concernis the associated threat to food security and
income in many low-income and developing nations’, many of which
have fished sharks for generations®. Alternative livelihood and income
options are needed to ease transitions to sustainability.

Conclusion

We demonstrate that—despite ranging farther from land than most spe-
cies—oceanic sharks are exceptionally threatened by overexploitation.
Itis clear that the Sustainable Development Goals and specific Aichi
Biodiversity Targets (to reverse population declines and use marine
resources sustainably) were not met by 2020 for these species. Actionis
neededimmediately to prevent shark population collapses and myriad
negative consequences for associated economic and ecological sys-
tems. Specifically, there is a clear and urgent need for governments
to adopt, implement, and enforce—at domestic and regional levels—
science-based catch limits for oceanic sharks that are capable of sup-
porting sustainable fisheries, and retention prohibitions, along with
bycatch mitigation, for the others”®. These steps are imperative for
long-term sustainability, including potentially increased catch once
populations are rebuilt>*°, and a brighter future for some of the most
iconic and functionally important animals in our oceans.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Data collection and expert selection of oceanic shark time-series
Time-series dataontherelative abundance (n=57) of 18 species (Supple-
mentary Table1) were gathered from peer-reviewed publications and the
grey literature, including government reports. Relative abundance indices,
and associated uncertainty estimates when available, included formal
stock assessment outputs (trends in biomass), as well as standardized or
nominal catch per unit effort (CPUE) or sightings per unit effort (SPUE)
from scientific surveys, fisheries data or bather protection nets (Supple-
mentary Tableland Extended DataFigs.4-8).Entry of original time-series
(inthe database available at https://www.sharkipedia.org/) was conducted
byJ.S.Y.and N.K.D. and subsequently independently checked by C.L.R.
and N.P. All datasets underwent extensive checks before analyses; their
reliability was reviewed and assigned to ocean regions (North or South
Atlantic Ocean; Indian Ocean; North or South Pacific Ocean) by experts
during an IUCN SSC SSG workshop (Dallas, Texas, USA, 5-9 November
2018). Stock assessment outputs were preferred over standardized out-
puts, then nominal CPUE or SPUE time-series when multiple datasets
were available for the same species and region. Stock assessment models
integrate the catch history, abundance trends and life-history informa-
tiontoinfer population dynamics, whereas CPUE or SPUE represents the
trendinrelative abundance of the sampled fraction of the population. The
details and rationale for the selection of datasets, where pertinent, are
presented in the population section of the relevant Red List assessment
(https://www.iucnredlist.org/). Two stock assessments were updated®*'
after the workshop and are thus included in our analysis.

Data collation and calculation of ecological and life-history traits
Estimates of shark age and maximum size can vary regionally, as well
asbetweenstudies. Where possible, estimates of generation time were
based on observed rather than theoretical maximum age. Within
regions, preference was givento studies that used: validated ages; the
widest size range; and age estimates that included repeat readers,
measuring precision and bias. The validated age estimates from the
closest region were used in cases for which there was no published age
and growth study for aregion, or validated ages from a region>>*,
Generation time is defined as the median age of parentsin the current
cohort®, Species- and region-specific generation time (GT) (Supple-
mentary Table 1) were calculated from female median age at maturity
(Ana) and maximum age (A,,.,) s GT = ((Amax — Amat)2) + Amae - The
constant z depends on the mortality rate of adults and is typically
around 0.3 for mammals®>*, We chose to assume a more conservative
value of z=0.5to account for the likelihood that the age structure had
already been truncated by overfishing by the time it was measured®*?
and that ages of sharks have been systematically underestimated**.
The details of generation time were presented to the workshop for
review and the final choices were used in the published [IUCN Red List
assessments and associated supplementary material for each species
(Supplementary Methods 2).

Modelling population dynamics

Toanalyse oceanic shark trend data, we used a Bayesian populationstate—
spacemodel designed for IUCN Red List assessments (Just Another Red
List Assessment (JARA)***"), which builds on the previously published
Bayesian state-space tool for averaging relative abundance indices*and
isavailable open-source on GitHub (https://github.com/henning-winker/
JARA).Eachrelative abundanceindex (or time-series) was assumed to fol-
low an exponential growth defined through the state process equation:

Hea=H 1

where g1, is the logarithm of the expected abundance inyear ¢, and r, is
the normally distributed annual rate of change with mean 7, the esti-
mable mean rate of change for a time-series and process variance o°.
Welinked the logarithm of the observed relative abundanceindices to
thelogarithm of the true expected population trend using the observa-
tion equation:

log(y,)=u,+¢,

wherey,denotes the abundance value for year ¢, &,is observation resid-
ual foryear ¢, whichis assumed to be normally distributed on log-scale
£,~N(0, 0.2 asafunction of the observation variance 0,2

Multiple time-series for aspeciesinthe sameregion (North or South
Atlantic Ocean; Indian Ocean; North or South Pacific Ocean) were ana-
lysed in a single run and treated as indices following the previously
published study?2. We used vague normal prior for 7~ N(0,1000) and
vague inverse-gamma (IG) prior for the process variance
0*~1G(0.001, 0.001).

Foreachtime-series, we also projected model estimates from the last
datapointto2020tobeableto estimate trajectories forthe LPlup tothe
final year of assessment for progress towards the Aichi Targets. These
projections were based on the posteriors of the estimated changes
across all years in the observed time-series (see ref. > for details):

1 n
F==)

Three Monte Carlo Markov chains were run for each dataset with dif-
ferentinitial values. Each Markov chain was initiated by assuming an
initial population size in the first year drawnin log-space from anormal
distribution with the mean equal to the log of the first available count
(y) and a standard deviation of 1,000. In each chain, the first 5,000
iterations were discarded as burn-in, and of the remaining 50,000
iterations, 10,000 were selected for posterior inference (‘thinning
rate’ =5). Thus, posterior distributions were estimated from 30,000
iterations. Convergence of each parameter was checked with the Gel-
man and Rubin diagnostics®®. Every model comes with four diagnostic
plots: the unscaled input dataand uncertainty estimates around each
observation in the form 95% confidence intervals, the observed and
predicted abundance values for each time-series together with the 95%
posterior predictive credibility intervals, individual fits on the log-scale,
as well as the 95% Bayesian credible intervals derived from the obser-
vation variance, and residual plot (see ref. ¥ for detailed description
and examples). We conducted posterior predictive checks (drawing
simulated values from the joint posterior predictive distribution of
replicated data and compare these samples to the observed data) by
checkingthat the credible interval of the fit of the models fell within the
posterior predictive distribution limits each time and that the Bayesian
Pvalues were around 0.5 (using Pearson residuals)*. Analyses were
performed using R statistical software v.3.5.2° and using the interface
fromR (R2jags v.0.5-7°%) to JAGS (‘Just Another Gibbs Sampler’v.4.3.0%).
The highest posterior density interval was used as the interval estima-
tor of 95% credible intervals.

Calculation of LPI

TheLPIfor oceanic sharksis a quantitative meanindex of year-to-year
rate of change of all species that occur in a given region that is aggre-
gated toaglobal scale (Extended DataFig.1). The annual rate of change
d,foreachspeciesinaregionisthelogarithm of the growthrate of the
time-seriesinagivenyeart:

I
d,= Ioglo(l—tlj
.

where /,denotes the posteriors of the estimated abundance trend
inagivenyear t obtained from the Bayesian state-space model outputs.
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To calculate the global LPI, the annual rates of change d, for each spe-
ciesin aregion were then aggregated to provide a single annual rate of
changeforeachregion (Extended DataFig.1a), and the same procedure
was applied acrossregionsinthe same Ocean (if subdivided insouth and
north regions), and finally across the three oceans to generate a global
year-to-year rate of change. We also computed a global LPI for each spe-
cies separately, by ocean and by time-series with similar ecological life-
style or life-history traits: geographical zone (temperate or tropical),
body size (maximum total length) and generation time (following the
IUCN definition®) (Supplementary Table 1). We back-transformed the
log-transformed values to alinear scale to generate index values for the
range of scales (global, by ocean, by species or trait groupings of the
time-series):

LPI, = LPI,_, x10%

where LPl,isthe LPlatagivenyeart,with LPI,_,=1.

The global index started in 1970 and was modelled until 2018 using
eachyear-to-year rate of change for the available time-series. In a sec-
ond step, the global index was extrapolated through to 2020 using
eachyear-to-yearrate of change for the available time-series, and their
projections after their last data point (Extended Data Fig. 2a).

Although the overall extent of change in the LPI is an indicator
of status and trends in biodiversity, the trend may be driven by the
data-rich species in our dataset. We evaluated the sensitivity of the
LPIto the subset of species, using a jackknife procedure in which we
sequentially dropped individual species and recalculated the index
(Extended DataFig. 3).

Calculation of the RFP

Toinvestigate the underlying drivers of the abundance trend decline,
we calculated the RFP, the changes in catch from 1970 to 2014 (end
oftheavailable data), relative to abundance (LPI) over the same time
period, and scaled by the RFP in 1970. First, we extracted the total
Sea Around Us project reconstructed reported and reconstructed
unreported catch data® by species for 14 of our 18 focal species—
catch datawere not available for 4 of the species: pelagic thresher (A.
pelagicus), reef mantaray (Mobula alfredi), shortfin devilray (Mobula
kuhlii) and pelagic stingray (Pteroplatytrygon violacea), and these
species were therefore not included in this analysis. To account for
the disproportionately high catch of some species (for example,
blue shark) in the total catch that could affect the overall pattern,
we scaled the catch data at the species level (sp) to the first catch
value in each time-series before summing across species. The RFP
was then calculated as:

X peatch,
LPI;
2 spcatche-1970
LPl¢=1970

RFP, =

where LPI, is the LPI of the 18 oceanic sharks in year . We also calcu-
lated the RFP with the LPI, of only the 14 species for which catch data
were available and this was not credibly different from the RFP for all
18 species.

Calculation of RLI

We calculated the RLI based on the proportion of the 31 oceanic
shark speciesineach IUCN Red List category in1980, 2005 and 2018
(Supplementary Table 2). The categories used in the assessments
were critically endangered, endangered, vulnerable, near threatened
and least concern. No species of oceanic shark were assessed in
the categories extinct, extinctin the wild or not evaluated. The sta-
tusesin 2018 were assigned by the [IUCN SSC SSG (Dallas, Texas, USA,
5-9 November 2018). For the RL1 of 2005, we used the assessments
published between 2000 and 2010. Red List assessments for around

2005 and 2018 are published on the IUCN Red List of Threatened
Species website®. Following the recommended IUCN methodology,
species previously assessed as data deficient were retrospectively
assigned a data-sufficient category (Supplementary Table 2). No
assessment was available in the 1980s and experts involved in the
IUCN SSC SSG workshop (Dallas, Texas, USA, 5-9 November 2018)
retrospectively determined Red List statuses for 1980, as well as
missing statuses in around 2005, as previously described®. To
account for uncertainty around a retrospective assessment, we
used abootstrap-like method toiteratively resample 10,000 times
the status of each species fromits retrospective assigned status or
one category better, or one category worse, denoted by the error
bar (therange of bootstrap-like results) in Fig. 3a around the retro-
spective RLIin 1980 (black dot).

The RLI value of a particular year (¢) is calculated by multiplying
the number of species (s) in each Red List category by the category
weight (W) (O for least concern, 1for near threatened, 2 for vulnerable,
3 for endangered, 4 for critically endangered, and 5 for extinct), then
summing the product and dividing by the maximum possible product
(number of species (N) multiplied by the maximum weight 5), and sub-
tracted from1to have anindex between O (where all species are extinct
(EX)) and 1 (where all species are least concern)®:

zs l/‘/c(t,s)
RLI, =1 TN

Thestand-alone pointlabelled ‘Global sharks’in Fig. 3aindicates the
starting point for the global chondrichthyan (sharks, rays and chimae-
ras) RLI calculated from the Red List status as reported in 2006 (the
median date of available Red List assessments at this time)™®.

Sustainability of stocks of oceanic sharks

Torepresent the status of stocks (populations) of oceanic sharks, we
compiled total biomass or abundance, relative to the maximum sus-
tainableyield (MSY), provided by authors or extracted from the latest
available stock assessment reports (the reference of the source and
the trajectory used are provided in Supplementary Table 3). A stock
assessment is the process of using statistical models to quantify the
population dynamics of a fished stock in response to fishing based
onthebestavailable catch, abundance and life-history information.
No stock assessment exists for any of the oceanic rays and one of the
blue shark stock assessments could not be included because no esti-
mates of MSY-related quantities were available®®. We therefore used
the 8 species (oceanic whitetip shark, dusky shark, shortfin mako,
porbeagle, scalloped hammerhead, great hammerhead, smooth
hammerhead, and blue shark) with published biomass or abundance
trajectories relative to MSY (15 stocks in total) to produce the global
proportion—over time—that these species were at levels above the
biomass or abundance achieving the MSY (that is, p(B > Bysy)), and
thus were not overfished (Fig. 4d). The biomass or abundance of each
stock relative to MSY was transformed into abinary variable, indicat-
ing whether the stock was above (1) or below (0) MSY. To represent
the status of species with several stocks, we calculated the propor-
tion—over time—of stocks above or below MSY. We then calculated
the global proportion—over time—that these species were at levels
above the biomass or abundance achieving the MSY by averaging
the proportions of the status of each species that were above MSY
foreachyear.

In a stock assessment, scientists attempt to estimate the amount
of fishing mortality (F) over time, and the fishing mortality that will
achieve MSY (Fysy). Using available stock assessments, we compiled
the latest value of fishing mortality relative to the fishing mortality
at MSY (F/Fysy) and plotted them against the latest value of biomass
or abundance trajectories relative to the MSY, in the ‘four quadrant,
red-orange-yellow-green’ Kobe plot style (Extended Data Fig. 9c).
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability
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Global Living Planet Index (track changes in abundance)
Average year-to-year rates of change for all Oceans then convert rate of change to index scale

— For each Ocean (North/South: only for Atlantic and Pacific)
Average year-to-year rates of change of sub-Oceans

— For each sub-Ocean
Average year-to-year rates of change between all species

For each species
Estimate year-to-year rates of change using a Bayesian state-space population model

Global Red List Index (track changes in extinction risk)
Sum all numbers and divide by score of worst scenario possible (all EX) then convert to 0-1 scale
(by removing 1 from the total)

For each species
Collate existing assessment criteria + retrospective + modify non-genuine change
Transform status into number (LC=0; NT=1; VU=2; EN=3; CR=4; EX=5)

Extended DataFig.1|Hierarchical building of theglobal LPland RLI. LC, least concern; NT, near threatened; VU, vulnerable; EN, endangered; CR, critically
endangered; EX, extinct.
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Extended DataFig.2| Calculation oftheLPI. a, Schematic example of
constructing the observed (black) and projected (blue) LPI. First, year-to-year
rates of change (yyrc) (d,) are averaged between species in the same region (for
example, inregion1(R1), species Awithd, andspecies Bwithd; averagedin
dy)-Inasecondstep, yyrcareaveraged betweenregions1,2and3 togive the
globalyyrc. The observed LPI builds on the yyrc calculated from the estimated
abundanceindex from the state-space population model. The projected LPI
buildsontheyyrccalculated from the estimated and projected abundance
index from the state-space population model. Projections are from the last
datapointto2020.b, Global LPIfor oceanic sharks and rays estimated from

1970to 2018 inblack and extrapolated to 2020 in blue. The black and the thick
bluelines denote, respectively, the mean of the estimated and extrapolated
LPI. The white and thinblueslines denote, respectively, the 95% credible
intervals of the estimated and extrapolated LPland the grey lines denote each
iteration of the estimated LPI. ¢, The annual percentage change was calculated
fromthe posteriors of the estimated LPI(grey) and extrapolated LPI (blue)
around the final-assessment year relative to the posteriors for 1970. Vertical
bars for the1970-2018 period denote the median of the estimated and
extrapolated LPI.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
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A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Ecological, evolutionary & environmental sciences study design
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Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions
Reproducibility
Randomization

Blinding

First, we used a Bayesian state-space framework (Winker et al. 2018, Sherley et al. 2020) to estimate trends in relative abundance of
18 species from 57 time-series compiled and reviewed at an expert workshop convened by the IUCN Species Survival Commission’s
Shark Specialist Group (IUCN SSC SSG). Using these trends, we calculated the global LPI for oceanic sharks from the reference year
1970 (which was set at 1) to 2018 — and then extrapolated each time-series to 2020 to encompass the Aichi Target assessment year
— by hierarchically aggregating the annual rates of change from each time-series for a species by region, then globally (see Text box
1 and Extended Data Figure 1a). Second, we combined a retrospective Red List assessment (1980) with two recent assessments
(~2005 and 2018) from the IUCN Red List of Threatened Species for all 31 species of oceanic sharks to build the RLI {see Text box 1).
Finally, we develop three lines of evidence to attribute decreasing abundance (shown by the LPI) and rising extinction risk (shown by
the RLI) for oceanic sharks to overfishing: (i) increasing Relative Fishing Pressure over time (measured as changes in catch relative to
the changes in the LPI), (ii) increasing proportion, over time, of oceanic sharks that are overfished below biomass or abundance levels
that could produce Maximum Sustainable Yield (MSY, which is the equilibrium state of the exploited population that can sustain the
greatest yield [catch] over long time periods Punt and Smith 2001), and (iii) the near-absence of significant threats other than fishing
reported in each species’ IUCN Red List assessment.

Time-series data on relative abundance (n=57) for 18 species (see Supplementary Table S1) were gathered from peer-reviewed
publications and the grey literature, including government reports. Relative abundance indices, and associated uncertainty estimates
when available, included formal stock assessment outputs (trends in biomass), as well as standardized or nominal catch per unit
effort (CPUE) or sightings per unit effort (SPUE) from scientific surveys, fisheries data, or bather protection nets (see Supplementary
Table S1 and EDF 4 to 8).

Time-series data gathered from peer-reviewed publications and the grey literature, including government reports.

Data collection of oceanic shark and ray time-series and expert selection:

Time-series data on relative abundance (n=57) for 18 species (see Supplementary Table S1) were gathered from peer-reviewed
publications and the grey literature, including government reports. Relative abundance indices, and associated uncertainty estimates
when available, included formal stock assessment outputs (trends in biomass), as well as standardized or nominal catch per unit
effort (CPUE) or sightings per unit effort (SPUE) from scientific surveys, fisheries data, or bather protection nets (see Supplementary
Table S1 and EDF 3 to 7). Entry of original time-series (in the database available at www.sharkipedia.org) was conducted by J.S.Y. and
N.K.D. and subsequently independently checked by C.L.R. and N.P. All datasets underwent extensive checks prior to analyses, their
reliability was reviewed and assigned to ocean regions (North, South Atlantic Ocean; Indian Ocean; North, South Pacific Ocean) by
experts during an IUCN SSC SSG workshop (Dallas, Texas, USA, 5-9 November 2018). Stock assessment outputs were preferred over
standardized, then nominal CPUE or SPUE time-series when multiple data sets were available for the same species and region. Stock
assessment models integrate the catch history, abundance trends and life-history information to infer population dynamics, whereas
CPUE or SPUE represents the trend in relative abundance of the sampled fraction of the population. The details and rationale for the
selection of datasets, where pertinent, are presented in the Population section of the relevant Red List assessment
(www.iucnredlist.org). Two stock assessments were updated (International Commission for the Conservation of Atlantic Tunas
(ICCAT) 2019, Tremblay-Boyer et al. 2019) aafter the workshop and are thus included in our analysis.

Data collation and calculation of ecological and life history traits:

Estimates of shark age and maximum size can vary regionally, as well as between studies and across regions. Where possible,
estimates of generation time (GT) were based on observed rather than theoretical maximum age. Within regions, preference was
given to studies that used: validated ages; the widest size range; and, age estimates that included repeat readers, measuring
precision, and bias. The validated age estimates from the closest region were used in cases where there was not a published age and
growth study for a region, or validated ages from a region (Cailliet and Goldman 2004, Cailliet 2015, Harry 2018). The details of GT
were presented to the workshop for review and the final choices were used in the published IUCN Red List assessments and
associated supplementary material for each species (see Supplementary Red List assessments, Supplementary Methods 2).

Entry of original time-series (in the database available at www.sharkipedia.org) was conducted by J.S.Y. and
N.K.D. and subsequently independently checked by C.L.R. and N.P.

No data were excluded from the analyses.
Code and data are available
Not relevant. No randomization needed.

Entry of original time-series (in the database available at www.sharkipedia.org) was conducted by J.S.Y. and
N.K.D. and subsequently independently checked by C.L.R. and N.P.

Did the study involve field work? |:| Yes No
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms

Human research participants

>
Q)
o
c
=
®
-
D
(2]
D
Q
=
o
>
=
®
o)
O
=
=t
>
(@]
wn
c
3
Q
2
<

Clinical data

XXX XX XX &
Oooodoog

Dual use research of concern




	Half a century of global decline in oceanic sharks and rays

	Declining abundance index

	Increasing extinction risk

	Overfishing is the main threat to oceanic sharks

	Discussion

	Conclusion

	Online content

	﻿Fig. 1 Global LPI for 18 oceanic sharks estimated from 1970 to 2018.
	﻿Fig. 2 LPI for 18 oceanic sharks from 1970 to 2018 disaggregated for each of the oceans and traits.
	﻿Fig. 3 Increase in extinction risk of oceanic sharks.
	﻿Fig. 4 Attributing abundance declines to overfishing.
	Extended Data Fig. 1 Hierarchical building of the global LPI and RLI.
	Extended Data Fig. 2 Calculation of the LPI.
	﻿Extended Data Fig. 3 Global and species-specific LPI for oceanic sharks and rays from 1970 to 2018.
	Extended Data Fig. 4 Time-series output for Carcharhinidae.
	Extended Data Fig. 5 Time-series output for Sphyrnidae.
	Extended Data Fig. 6 Time-series output for Alopiidae.
	Extended Data Fig. 7 Time-series output for Lamnidae.
	Extended Data Fig. 8 Time-series output for Dasyatidae and Mobulidae.
	Extended Data Fig. 9 Stock assessments for oceanic sharks.
	Extended Data Fig. 10 Percentage of reported threat categories in the 31 oceanic shark IUCN Red List assessments.




