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Half a century of global decline in oceanic 
sharks and rays

Nathan Pacoureau1 ✉, Cassandra L. Rigby2, Peter M. Kyne3, Richard B. Sherley4 ✉, 
Henning Winker5,6, John K. Carlson7, Sonja V. Fordham8, Rodrigo Barreto9, Daniel Fernando10, 
Malcolm P. Francis11, Rima W. Jabado12, Katelyn B. Herman13, Kwang-Ming Liu14, 
Andrea D. Marshall15, Riley A. Pollom1, Evgeny V. Romanov16, Colin A. Simpfendorfer2, 
Jamie S. Yin1,17, Holly K. Kindsvater18 & Nicholas K. Dulvy1

Overfishing is the primary cause of marine defaunation, yet declines in and increasing 
extinction risks of individual species are difficult to measure, particularly for the 
largest predators found in the high seas1–3. Here we calculate two well-established 
indicators to track progress towards Aichi Biodiversity Targets and Sustainable 
Development Goals4,5: the Living Planet Index (a measure of changes in abundance 
aggregated from 57 abundance time-series datasets for 18 oceanic shark and ray 
species) and the Red List Index (a measure of change in extinction risk calculated for 
all 31 oceanic species of sharks and rays). We find that, since 1970, the global 
abundance of oceanic sharks and rays has declined by 71% owing to an 18-fold increase 
in relative fishing pressure. This depletion has increased the global extinction risk to 
the point at which three-quarters of the species comprising this functionally 
important assemblage are threatened with extinction. Strict prohibitions and 
precautionary science-based catch limits are urgently needed to avert population 
collapse6,7, avoid the disruption of ecological functions and promote species 
recovery8,9.

Over the United Nations ‘Decade of Biodiversity’ from 2011 to 2020, gov-
ernments committed to improve human wellbeing and food security 
by safeguarding ecosystem services and halting biodiversity loss10. The 
Sustainable Development Goals, adopted by all member states of the 
United Nations, and the 20 Aichi Biodiversity Targets of the Convention 
on Biological Diversity provide a framework to track progress towards 
the 2020 deadline4,5,10. Seafood sustainability is an integral part of these 
commitments, and wild-capture fisheries are essential nutritional and 
economic resources for millions of people globally11,12. However, it is 
difficult to assess changes in the state of biodiversity and ecosystem 
structure, function and services beneath the ocean surface13.

Elasmobranchs (sharks and rays, hereafter ‘sharks’) offer a unique 
window into the state of the oceans. Sharks are one of the most evolu-
tionarily distinct and functionally diverse vertebrate radiations14,15. The 
first global assessment of the International Union for Conservation of 
Nature (IUCN) estimated that one-quarter of sharks were threatened 
with extinction (classified as critically endangered, endangered or 
vulnerable according to the criteria of the IUCN Red List of Threatened 
Species)16, making sharks the most threatened vertebrate lineage after 
amphibians16–18. The long generation times and low intrinsic population 

growth rates of many sharks make them inherently susceptible to over-
exploitation1,7,19. Globally, sharks are landed for their meat, fins, gill 
plates and liver oil20,21 and catches increased to an estimated peak of 
63–273 million individuals in the early 2000s before declining owing 
to overfishing6. The first warnings of the dire status of sharks were 
based on boom-and-bust catch patterns and the increasing interna-
tional trade in shark fins22,23. Subsequently, serious declines in many 
oceanic and coastal shark populations were documented, both in the 
Gulf of Mexico and Northwest Atlantic24,25, and also in South Africa26 
and Australia27. Shark population assessments for many other regions 
have since become increasingly robust8,28,29. Until now, however, these 
have not been synthesized to provide a global perspective on shark 
population trends.

Here we calculate for oceanic sharks two biodiversity indicators 
established by the Convention on Biological Diversity: the Living 
Planet Index (LPI)5,30 on global population changes since 1970 and the 
Red List Index (RLI)5,31, which tracks changes in the relative extinction 
risk of taxa. These indicators quantify progress towards Aichi Biodi-
versity Targets 6 (manage marine resources for sustainability) and 12 
(prevent extinction), and Sustainable Development Goal 14 (conserve 
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and sustainably use the oceans). First, we used a Bayesian state–space 
framework32,33 to estimate trends in the relative abundance of 18 spe-
cies from 57 time-series datasets compiled and reviewed at an expert 
workshop convened by the IUCN Species Survival Commission’s Shark 
Specialist Group (IUCN SSC SSG). Using these trends, we calculated the 
global LPI for oceanic sharks from the reference year 1970 (which was 
set at 1) to 2018—and then extrapolated each time-series to 2020 to 
encompass the Aichi Biodiversity Target assessment year—by hierarchi-
cally aggregating the annual rates of change from each time-series for a 
species by region, then globally (Extended Data Figs. 1, 2a). Second, we 
combined a retrospective Red List assessment (1980) with two recent 
assessments (around 2005 and 2018) from the IUCN Red List for all 31 
species of oceanic sharks to build the RLI (Extended Data Fig. 1). The 
RLI provides standardized assessments of the extinction risk of each 
species, which are comparable across taxa, and is particularly useful 
when robust trend data are missing. Comparing the RLI over time, 
among different taxa, reveals the common trends in extinction risk 
among groups, despite differences in habitat, life history and threats. 
Such cross-taxon comparisons are useful to ensure the appropriate 
allocation of global conservation resources across terrestrial, fresh-
water and marine biomes.

Finally, we develop three lines of evidence to attribute the decreasing 
abundance (shown by the LPI) and increasing extinction risk (shown by 
the RLI) of oceanic sharks to overfishing: (1) increasing relative fishing 
pressure (RFP) over time (measured as changes in catch rates relative 
to the changes in the LPI); (2) an increasing proportion, over time, of 
oceanic sharks that are overfished and below biomass or abundance 
levels that could produce the maximum sustainable yield (the equi-
librium state of the exploited population sustaining the greatest yield 
(that is, catch rate) over long time periods34); and (3) the near-absence 
of important threats other than fishing reported in the IUCN Red List 
assessment of each species.

Declining abundance index
We find that, globally, the abundance of oceanic sharks declined by 
71.1% (95% credible interval, 63.2–78.4%) (Fig. 1) from 1970 to 2018, 
at a steady rate averaging 18.2% per decade (Extended Data Fig. 2c). 
Over the half-century from 1970 to 2020, the projected LPI estimates 
that abundance declined by 70.1% (95% credible interval, 62.8–77.2%) 
(Extended Data Fig. 2b). The declining trend in the LPI trajectory is 
robust to the exclusion of any individual species (Extended Data Fig. 3). 
There are three reasons why the true abundance trend index values are 
likely to be lower (and calculated percentage declines worse) than esti-
mated here (Supplementary Discussion 1): (1) fishing levels were already 
unsustainable half a century ago; (2) unreported catches (including 
discards) are not included in our time-series; and (3) traditional stock 
assessments could underestimate fishing mortality.

The global trend index can be disaggregated into trajectories for 
each ocean and species, as well as for functional groups with similar 
ecological or life-history traits. In the Atlantic Ocean, following a long 
period of decline since 1970, abundances began to stabilize at low levels 
after 2000 (overall decline of 46.1%; 95% credible interval, 30.7–61.1%) 
(Fig. 2a). In the Pacific Ocean, abundances decreased steeply before 
1990, and then declined at a slower rate (overall decline of 67.0%; 95% 
credible interval, 53.6–79.4%) (Fig. 2c). In the Indian Ocean, shark abun-
dances have declined steeply since 1970 (overall decline of 84.7%; 95% 
credible interval, 75.9–92.1%) (Fig. 2b). Despite more resilient life his-
tories, tropical sharks declined more steeply than temperate species 
(overall declines of 87.8%; 95% credible interval, 79.8–94.3% compared 
with 40.9%; 95% credible interval, 30.4–50.5%) (Fig. 2d). Overfishing 
of sharks followed a classic pattern of serial depletion, starting with 
the largest species, which dropped steeply before the 1980s, followed 
by declines in medium-sized species and eventually relatively small 
species (including some devil rays, Mobula spp.) (Fig. 2e). Long-lived, 

late-maturing species initially declined faster than those with shorter 
generation times, but two of these species (white shark (Carcharodon 
carcharias) and porbeagle (Lamna nasus)) have shown signs of popula-
tion rebuilding since the early 2000s (Fig. 2f and Extended Data Fig. 7). 
All species, apart from the smooth hammerhead (Sphyrna zygaena), 
decreased in abundance over the past half-century (Fig. 2g). Devil 
ray abundance has declined by at least 85% in the past 15 years in the 
Southwest Indian Ocean (Fig. 2g). Although sparse, the available data 
for devil rays are representative of the repeated, rapid depletions and 
local extinctions suspected to have occurred because of overfishing 
that are driven by target fisheries in many parts of their historical range 
(Supplementary Discussion 2).

Increasing extinction risk
For all 31 oceanic shark species, the risk of extinction, indicated by 
IUCN Red List category, has substantially increased since 1980. The RLI 
declined from a retrospective estimate of 0.86 (range, 0.74–0.90) in 
1980 to 0.56 in 2018, comparable to cycads (palm-like plants), the most 
threatened group of completely assessed species on Earth35 (Fig. 3a). 
We estimate that in 1980, two-thirds (n = 20) of oceanic shark species 
fell into the IUCN Red List category of least concern, and only nine were 
threatened. The basking shark (Cetorhinus maximus) was the only 
species that was retrospectively classified as endangered. More than 
three-quarters (n = 24) of these species are threatened now based on 
steep population reductions (IUCN Red List criterion A). Some formerly 
abundant, wide-ranging sharks have declined so steeply that they are 
now classified in the two highest IUCN Red List threatened categories: 
three are critically endangered (oceanic whitetip shark (Carcharhi-
nus longimanus), scalloped hammerhead (Sphyrna lewini) and great 
hammerhead (Sphyrna mokarran)), and four are endangered (pelagic 
thresher (Alopias pelagicus), dusky shark (Carcharhinus obscurus), 
shortfin mako (Isurus oxyrinchus) and longfin mako (Isurus paucus)) 
(Fig. 3b). In total, half (16 out of 31) of oceanic shark species are now 
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critically endangered (n = 3; ≥80% population reduction over three 
generations) or endangered (n = 13; 50–79% population reduction).

Overfishing is the main threat to oceanic sharks
We attribute the declines in populations and increased extinction risk 
of oceanic sharks to overfishing based on three lines of evidence. First, 
there has been a more than twofold increase in fishing with longlines 
and seine nets, the gears that catch the most oceanic sharks36, during 
the past half-century (Fig. 4a; data corrected for technological creep, 
see Supplementary Methods 1). Concomitantly, oceanic shark catch 
rates have increased threefold since 1970 (Fig. 4a), resulting in an 18-fold 
increase in RFP (Fig. 4b). This correlation suggests that fishing drove 
declines in the abundances of sharks with a notable breakpoint in 1990 

that we hypothesize coincides with the increasing retention of sharks to 
meet new market demands (specifically for fins)37 (Fig. 4c). Second, the 
role of fisheries in driving the declines is thoroughly addressed in the 
growing number of robust fisheries stock assessments (Extended Data 
Fig. 9b). The declining LPI is consistent with an increasing proportion 
of populations and species that have been assessed to be overfished 
over time (21%) (Fig. 4d); 6 of the 8 assessed species and more than half 
of the populations (9 of 15) are below the biomass or abundance levels 
that could produce the maximum sustainable yield (Extended Data 
Fig. 9c). Third, we compiled the causes of declines reported in the Red 
List assessments, which are classified into 11 categories ranging from 
‘human intrusions and disturbance’, to ‘climate and severe weather’38. 
Although there are numerous pressures acting on sharks, every Red 
List assessment for the 31 oceanic sharks concluded that the major 
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threat was ‘biological resource use’ and, more specifically, ‘fishing and 
harvesting aquatic resources’. Other threats are reported for only two 
species (Extended Data Fig. 10).

Discussion
We document an alarming, ongoing, worldwide decline in oceanic 
shark populations across the world’s largest ecosystem over the past 
half-century, resulting in an unprecedented increase in the risk of 
extinction of these species. A marked increase in relative fishing pres-
sure is mirrored by the general consistency in the rate and extent of 
declines across species with differing body sizes and generation times. 
The low reproductive output of these slow-growing species is clearly 
no match for the intense fishing pressure that they are currently under.

Overfishing of oceanic shark populations has far outpaced the imple-
mentation of fisheries management and trade regulations39. Despite 
great improvements in conservation commitments in recent decades, 
relatively few countries impose catch limits specific to oceanic sharks, 
and fewer still can demonstrate population rebuilding or sustainable 
fisheries for these species. Obligations under international wildlife 
treaties7 to prohibit retention or restrict international trade of select 
species have not yet been implemented effectively40. The world’s four 
major regional fishery management organizations focused on tunas 
have, to varying degrees, prohibited the retention of inherently sensi-
tive oceanic shark species that are also of relatively low value to the asso-
ciated pelagic fisheries. However, tuna regional fishery management 

organizations fishing limits for more commercially important sharks 
have been largely inadequate with respect to heeding scientific advice 
and using ecosystem-based fisheries management41,42 (Supplementary 
Discussion 3).

There are some encouraging findings. We note that the white shark 
historically declined by an estimated 70% worldwide over the past 
half-century, but is now recovering in several regions, aided by retention 
bans43. Hammerhead shark populations are rebuilding in the North-
west Atlantic, owing to strictly enforced quotas throughout their US 
range. The blue shark has declined less than other species, despite being 
reported to be at significantly greater risk due to its high distributional 
overlap with heavily fished areas44. This is probably due to its relatively 
high reproductive rate (compared to other oceanic sharks), but nev-
ertheless its management is warranted on a global scale as market 
interest and targeted fishing increase. It is possible to reverse shark 
population declines, even for slow-growing species, if precautionary, 
science-based management is implemented throughout the range of 
the species8,45 before depletion reaches a point of no return.

We can use IUCN Red List status and trends as a heuristic to guide 
the conservation priorities of countries with limited capacity to assess, 
manage and conserve oceanic species. This guidance will be less rel-
evant to nations with the capacity to undertake stock assessments 
and ensure compliance with management8, reflecting the fact that 
the global Red List status and local status of a species may differ. It has 
been previously recommended that sharks assessed globally as near 
threatened or even some assessed as vulnerable may still be able to 
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sustain modest levels of fishing, if managed immediately and carefully 
throughout their range7,16. Species classified as critically endangered 
or endangered cannot support fisheries. In these cases, policy rec-
ommendations based on stock assessments or on the global Red List 
status will be congruent46; strict measures to prohibit landings and 
minimize bycatch mortality (by avoiding hotspots, modifying gear 
and improving release practices) are urgently needed to halt declines 
and rebuild populations.

The ecosystem consequences of the declines in oceanic shark popula-
tions are uncertain because of the complexity and scale of the marine 
food webs47. Nevertheless, the profound effects of depleting predatory 
species are becoming apparent. For example, the decline in preda-
tory sharks and tunas is associated with increases in mesopredators, 
including teleosts and smaller-bodied shark species48, indicating that 
fundamental functional changes to these marine food webs are occur-
ring15. Of further concern is the associated threat to food security and 
income in many low-income and developing nations7, many of which 
have fished sharks for generations49. Alternative livelihood and income 
options are needed to ease transitions to sustainability.

Conclusion
We demonstrate that—despite ranging farther from land than most spe-
cies—oceanic sharks are exceptionally threatened by overexploitation. 
It is clear that the Sustainable Development Goals and specific Aichi 
Biodiversity Targets (to reverse population declines and use marine 
resources sustainably) were not met by 2020 for these species. Action is 
needed immediately to prevent shark population collapses and myriad 
negative consequences for associated economic and ecological sys-
tems. Specifically, there is a clear and urgent need for governments 
to adopt, implement, and enforce—at domestic and regional levels—
science-based catch limits for oceanic sharks that are capable of sup-
porting sustainable fisheries, and retention prohibitions, along with 
bycatch mitigation, for the others7,8. These steps are imperative for 
long-term sustainability, including potentially increased catch once 
populations are rebuilt9,50, and a brighter future for some of the most 
iconic and functionally important animals in our oceans.
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Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Data collection and expert selection of oceanic shark time-series
Time-series data on the relative abundance (n = 57) of 18 species (Supple-
mentary Table 1) were gathered from peer-reviewed publications and the 
grey literature, including government reports. Relative abundance indices, 
and associated uncertainty estimates when available, included formal 
stock assessment outputs (trends in biomass), as well as standardized or 
nominal catch per unit effort (CPUE) or sightings per unit effort (SPUE) 
from scientific surveys, fisheries data or bather protection nets (Supple-
mentary Table 1 and Extended Data Figs. 4–8). Entry of original time-series 
(in the database available at https://www.sharkipedia.org/) was conducted 
by J.S.Y. and N.K.D. and subsequently independently checked by C.L.R. 
and N.P. All datasets underwent extensive checks before analyses; their 
reliability was reviewed and assigned to ocean regions (North or South 
Atlantic Ocean; Indian Ocean; North or South Pacific Ocean) by experts 
during an IUCN SSC SSG workshop (Dallas, Texas, USA, 5–9 November 
2018). Stock assessment outputs were preferred over standardized out-
puts, then nominal CPUE or SPUE time-series when multiple datasets 
were available for the same species and region. Stock assessment models 
integrate the catch history, abundance trends and life-history informa-
tion to infer population dynamics, whereas CPUE or SPUE represents the 
trend in relative abundance of the sampled fraction of the population. The 
details and rationale for the selection of datasets, where pertinent, are 
presented in the population section of the relevant Red List assessment 
(https://www.iucnredlist.org/). Two stock assessments were updated25,51 
after the workshop and are thus included in our analysis.

Data collation and calculation of ecological and life-history traits
Estimates of shark age and maximum size can vary regionally, as well 
as between studies. Where possible, estimates of generation time were 
based on observed rather than theoretical maximum age. Within 
regions, preference was given to studies that used: validated ages; the 
widest size range; and age estimates that included repeat readers, 
measuring precision and bias. The validated age estimates from the 
closest region were used in cases for which there was no published age 
and growth study for a region, or validated ages from a region52–54. 
Generation time is defined as the median age of parents in the current 
cohort55. Species- and region-specific generation time (GT) (Supple-
mentary Table 1) were calculated from female median age at maturity 
(Amat) and maximum age (Amax) as A A z AGT = (( − ) ) +max mat mat . The  
constant z depends on the mortality rate of adults and is typically 
around 0.3 for mammals55,56. We chose to assume a more conservative 
value of z = 0.5 to account for the likelihood that the age structure had 
already been truncated by overfishing by the time it was measured26,27 
and that ages of sharks have been systematically underestimated54. 
The details of generation time were presented to the workshop for 
review and the final choices were used in the published IUCN Red List 
assessments and associated supplementary material for each species 
(Supplementary Methods 2).

Modelling population dynamics
To analyse oceanic shark trend data, we used a Bayesian population state–
space model designed for IUCN Red List assessments ( Just Another Red 
List Assessment ( JARA)33,57), which builds on the previously published 
Bayesian state–space tool for averaging relative abundance indices32 and 
is available open-source on GitHub (https://github.com/henning-winker/
JARA). Each relative abundance index (or time-series) was assumed to fol-
low an exponential growth defined through the state process equation:

μ μ r= +t t t+1

where μt is the logarithm of the expected abundance in year t, and rt is 
the normally distributed annual rate of change with mean r̂, the esti-
mable mean rate of change for a time-series and process variance σ2. 
We linked the logarithm of the observed relative abundance indices to 
the logarithm of the true expected population trend using the observa-
tion equation:

y μ εlog( ) = +t t t

where yt denotes the abundance value for year t, εt is observation resid-
ual for year t, which is assumed to be normally distributed on log-scale 
εt ~ N(0, σε

2) as a function of the observation variance σε
2.

Multiple time-series for a species in the same region (North or South 
Atlantic Ocean; Indian Ocean; North or South Pacific Ocean) were ana-
lysed in a single run and treated as indices following the previously 
published study32. We used vague normal prior for r Nˆ~ (0, 1000) and 
vague inverse-gamma (IG) prior for the process variance 
σ2 ~ IG(0.001, 0.001).

For each time-series, we also projected model estimates from the last 
data point to 2020 to be able to estimate trajectories for the LPI up to the 
final year of assessment for progress towards the Aichi Targets. These 
projections were based on the posteriors of the estimated changes 
across all years in the observed time-series (see ref. 57 for details):

∑r
n

r=
1

t

n

t
=1

Three Monte Carlo Markov chains were run for each dataset with dif-
ferent initial values. Each Markov chain was initiated by assuming an 
initial population size in the first year drawn in log-space from a normal 
distribution with the mean equal to the log of the first available count 
(y1) and a standard deviation of 1,000. In each chain, the first 5,000 
iterations were discarded as burn-in, and of the remaining 50,000 
iterations, 10,000 were selected for posterior inference (‘thinning 
rate’ = 5). Thus, posterior distributions were estimated from 30,000 
iterations. Convergence of each parameter was checked with the Gel-
man and Rubin diagnostics58. Every model comes with four diagnostic 
plots: the unscaled input data and uncertainty estimates around each 
observation in the form 95% confidence intervals, the observed and 
predicted abundance values for each time-series together with the 95% 
posterior predictive credibility intervals, individual fits on the log-scale, 
as well as the 95% Bayesian credible intervals derived from the obser-
vation variance, and residual plot (see ref. 57 for detailed description 
and examples). We conducted posterior predictive checks (drawing 
simulated values from the joint posterior predictive distribution of 
replicated data and compare these samples to the observed data) by 
checking that the credible interval of the fit of the models fell within the 
posterior predictive distribution limits each time and that the Bayesian 
P values were around 0.5 (using Pearson residuals)59,60. Analyses were 
performed using R statistical software v.3.5.261 and using the interface 
from R (R2jags v.0.5-762) to JAGS (‘Just Another Gibbs Sampler’ v.4.3.063). 
The highest posterior density interval was used as the interval estima-
tor of 95% credible intervals.

Calculation of LPI
The LPI for oceanic sharks is a quantitative mean index of year-to-year 
rate of change of all species that occur in a given region that is aggre-
gated to a global scale (Extended Data Fig. 1). The annual rate of change 
dt for each species in a region is the logarithm of the growth rate of the 
time-series in a given year t:









d

I
I

= logt
t

t
10

−1

where It denotes the posteriors of the estimated abundance trend  
in a given year t obtained from the Bayesian state–space model outputs.

https://www.sharkipedia.org/
https://www.iucnredlist.org/
https://github.com/henning-winker/JARA
https://github.com/henning-winker/JARA


To calculate the global LPI, the annual rates of change dt for each spe-
cies in a region were then aggregated to provide a single annual rate of 
change for each region (Extended Data Fig. 1a), and the same procedure 
was applied across regions in the same Ocean (if subdivided in south and 
north regions), and finally across the three oceans to generate a global 
year-to-year rate of change. We also computed a global LPI for each spe-
cies separately, by ocean and by time-series with similar ecological life-
style or life-history traits: geographical zone (temperate or tropical), 
body size (maximum total length) and generation time (following the 
IUCN definition55) (Supplementary Table 1). We back-transformed the 
log-transformed values to a linear scale to generate index values for the 
range of scales (global, by ocean, by species or trait groupings of the 
time-series):

LPI = LPI × 10t t
d

−1
t

where LPIt is the LPI at a given year t, with LPIt = 1 = 1.
The global index started in 1970 and was modelled until 2018 using 

each year-to-year rate of change for the available time-series. In a sec-
ond step, the global index was extrapolated through to 2020 using 
each year-to-year rate of change for the available time-series, and their 
projections after their last data point (Extended Data Fig. 2a).

Although the overall extent of change in the LPI is an indicator 
of status and trends in biodiversity, the trend may be driven by the 
data-rich species in our dataset. We evaluated the sensitivity of the 
LPI to the subset of species, using a jackknife procedure in which we 
sequentially dropped individual species and recalculated the index 
(Extended Data Fig. 3).

Calculation of the RFP
To investigate the underlying drivers of the abundance trend decline, 
we calculated the RFP, the changes in catch from 1970 to 2014 (end 
of the available data), relative to abundance (LPI) over the same time 
period, and scaled by the RFP in 1970. First, we extracted the total 
Sea Around Us project reconstructed reported and reconstructed 
unreported catch data64 by species for 14 of our 18 focal species—
catch data were not available for 4 of the species: pelagic thresher (A. 
pelagicus), reef manta ray (Mobula alfredi), shortfin devilray (Mobula 
kuhlii) and pelagic stingray (Pteroplatytrygon violacea), and these 
species were therefore not included in this analysis. To account for 
the disproportionately high catch of some species (for example, 
blue shark) in the total catch that could affect the overall pattern, 
we scaled the catch data at the species level (sp) to the first catch 
value in each time-series before summing across species. The RFP 
was then calculated as:

RFP =t

∑ catch

LPI
∑ catch

LPI

t

t

t

t

sp

sp =1970

=1970

where LPIt is the LPI of the 18 oceanic sharks in year t. We also calcu-
lated the RFP with the LPIt of only the 14 species for which catch data 
were available and this was not credibly different from the RFP for all 
18 species.

Calculation of RLI
We calculated the RLI based on the proportion of the 31 oceanic 
shark species in each IUCN Red List category in 1980, 2005 and 2018 
(Supplementary Table 2). The categories used in the assessments 
were critically endangered, endangered, vulnerable, near threatened 
and least concern. No species of oceanic shark were assessed in 
the categories extinct, extinct in the wild or not evaluated. The sta-
tuses in 2018 were assigned by the IUCN SSC SSG (Dallas, Texas, USA, 
5–9 November 2018). For the RLI of 2005, we used the assessments 
published between 2000 and 2010. Red List assessments for around 

2005 and 2018 are published on the IUCN Red List of Threatened 
Species website65. Following the recommended IUCN methodology, 
species previously assessed as data deficient were retrospectively 
assigned a data-sufficient category (Supplementary Table 2). No 
assessment was available in the 1980s and experts involved in the 
IUCN SSC SSG workshop (Dallas, Texas, USA, 5–9 November 2018) 
retrospectively determined Red List statuses for 1980, as well as 
missing statuses in around 2005, as previously described31. To 
account for uncertainty around a retrospective assessment, we 
used a bootstrap-like method to iteratively resample 10,000 times 
the status of each species from its retrospective assigned status or 
one category better, or one category worse, denoted by the error 
bar (the range of bootstrap-like results) in Fig. 3a around the retro-
spective RLI in 1980 (black dot).

The RLI value of a particular year (t) is calculated by multiplying 
the number of species (s) in each Red List category by the category 
weight (W) (0 for least concern, 1 for near threatened, 2 for vulnerable, 
3 for endangered, 4 for critically endangered, and 5 for extinct), then 
summing the product and dividing by the maximum possible product 
(number of species (N) multiplied by the maximum weight 5), and sub-
tracted from 1 to have an index between 0 (where all species are extinct 
(EX)) and 1 (where all species are least concern)31:

W

W N
RLI = 1 −

∑
t

s c t s( , )

EX

The stand-alone point labelled ‘Global sharks’ in Fig. 3a indicates the 
starting point for the global chondrichthyan (sharks, rays and chimae-
ras) RLI calculated from the Red List status as reported in 2006 (the 
median date of available Red List assessments at this time)16.

Sustainability of stocks of oceanic sharks
To represent the status of stocks (populations) of oceanic sharks, we 
compiled total biomass or abundance, relative to the maximum sus-
tainable yield (MSY), provided by authors or extracted from the latest 
available stock assessment reports (the reference of the source and 
the trajectory used are provided in Supplementary Table 3). A stock 
assessment is the process of using statistical models to quantify the 
population dynamics of a fished stock in response to fishing based 
on the best available catch, abundance and life-history information. 
No stock assessment exists for any of the oceanic rays and one of the 
blue shark stock assessments could not be included because no esti-
mates of MSY-related quantities were available66. We therefore used 
the 8 species (oceanic whitetip shark, dusky shark, shortfin mako, 
porbeagle, scalloped hammerhead, great hammerhead, smooth 
hammerhead, and blue shark) with published biomass or abundance 
trajectories relative to MSY (15 stocks in total) to produce the global 
proportion—over time—that these species were at levels above the 
biomass or abundance achieving the MSY (that is, p(B > BMSY)), and 
thus were not overfished (Fig. 4d). The biomass or abundance of each 
stock relative to MSY was transformed into a binary variable, indicat-
ing whether the stock was above (1) or below (0) MSY. To represent 
the status of species with several stocks, we calculated the propor-
tion—over time—of stocks above or below MSY. We then calculated 
the global proportion—over time—that these species were at levels 
above the biomass or abundance achieving the MSY by averaging 
the proportions of the status of each species that were above MSY 
for each year.

In a stock assessment, scientists attempt to estimate the amount 
of fishing mortality (F) over time, and the fishing mortality that will 
achieve MSY (FMSY). Using available stock assessments, we compiled 
the latest value of fishing mortality relative to the fishing mortality 
at MSY (F/FMSY) and plotted them against the latest value of biomass 
or abundance trajectories relative to the MSY, in the ‘four quadrant, 
red–orange–yellow–green’ Kobe plot style (Extended Data Fig. 9c).
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Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data are available on https://www.sharkipedia.org/ and at https://doi.
org/10.5281/zenodo.4135325. Source data are provided with this paper.
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Extended Data Fig. 1 | Hierarchical building of the global LPI and RLI. LC, least concern; NT, near threatened; VU, vulnerable; EN, endangered; CR, critically 
endangered; EX, extinct.
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Extended Data Fig. 2 | Calculation of the LPI. a, Schematic example of 
constructing the observed (black) and projected (blue) LPI. First, year-to-year 
rates of change (yyrc) (dt) are averaged between species in the same region (for 
example, in region 1 (R1), species A with d At

 and species B with dBt
 averaged in 

dR1 t
). In a second step, yyrc are averaged between regions 1, 2 and 3 to give the 

global yyrc. The observed LPI builds on the yyrc calculated from the estimated 
abundance index from the state–space population model. The projected LPI 
builds on the yyrc calculated from the estimated and projected abundance 
index from the state-space population model. Projections are from the last 
data point to 2020. b, Global LPI for oceanic sharks and rays estimated from 

1970 to 2018 in black and extrapolated to 2020 in blue. The black and the thick 
blue lines denote, respectively, the mean of the estimated and extrapolated 
LPI. The white and thin blues lines denote, respectively, the 95% credible 
intervals of the estimated and extrapolated LPI and the grey lines denote each 
iteration of the estimated LPI. c, The annual percentage change was calculated 
from the posteriors of the estimated LPI (grey) and extrapolated LPI (blue) 
around the final-assessment year relative to the posteriors for 1970. Vertical 
bars for the 1970–2018 period denote the median of the estimated and 
extrapolated LPI.



Extended Data Fig. 3 | Global and species-specific LPI for oceanic sharks 
and rays from 1970 to 2018. Global original LPI is the mean black line. Faint 
grey lines show the effect of excluding all data for a single species at a time and 
recalculating the mean global LPI for all other species. No means from jackknife 

species trends fall outside the 95% credible interval from the run with all of the 
datasets included, suggesting that our selection of species did not unduly 
influence the overall LPI result.
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Extended Data Fig. 4 | Time-series output for Carcharhinidae.  
a–d, Observed (black or empty points and stars indicate different time-series) 
and modelled (black line) abundance indices for silky shark (Carcharhinus 
falciformis) (a), oceanic whitetip shark (C. longimanus) (b), dusky shark  

(C. obscurus) (c) and blue shark (Prionace glauca) (d) obtained from the  
state–space population model. The thick black line denotes the mean of the 
estimated abundance index and the shaded regions denote 95% credible 
intervals.



Extended Data Fig. 5 | Time-series output for Sphyrnidae. a–c, Observed 
(black or empty points and stars indicate different time-series) and modelled 
(black line) abundance indices for scalloped hammerhead (S. lewini) (a), great 
hammerhead (S. mokarran) (b) and smooth hammerhead (S. zygaena) (c) 

obtained from the state–space population model. The thick black line denotes 
the mean of the estimated abundance index and the shaded regions denote 95% 
credible intervals.
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Extended Data Fig. 6 | Time-series output for Alopiidae. a–c, Observed 
(points) and modelled (black line) abundance indices for pelagic thresher  
(A. pelagicus) (a), bigeye thresher (Alopias superciliosus) (b) and common 

thresher (Alopias vulpinus) (c) obtained from the state–space population 
model. The thick black line denotes the mean of the estimated abundance 
index and the shaded regions denote 95% credible intervals.



Extended Data Fig. 7 | Time-series output for Lamnidae. a–d, Observed 
(black or empty points and stars indicate different time-series) and modelled 
(black line) abundance indices for white shark (C. carcharias) (a), shortfin mako 
(I. oxyrinchus) (b), longfin mako (I. paucus) (c) and porbeagle (L. nasus) (d) 

obtained from the state–space population model. The thick black line denotes 
the mean of the estimated abundance index and the shaded regions denote 95% 
credible intervals.
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Extended Data Fig. 8 | Time-series output for Dasyatidae and Mobulidae.  
a–d, Observed (points) and modelled (black line) abundance indices for 
pelagic stingray (P. violacea) (a), reef manta ray (M. alfredi) (b), giant manta ray 
(Mobula birostris) (c) and shortfin devilray (M. kuhlii) (d) obtained from the 

state–space population model. The thick black line denotes the mean of the 
estimated abundance index and the shaded regions denote 95% credible 
intervals.



Extended Data Fig. 9 | Stock assessments for oceanic sharks. a, Oceanic 
shark stock status—over time—being at levels of biomass or abundance above 
MSY (green lines) or below MSY (red lines). Data were obtained from refs. 24,25,28,51,  
and refs. 81–84,93,94,96,97 in the Supplementary Information. Dotted lines 
indicate that a stock is above or below the biomass or abundance levels 
producing MSY following the last stock assessment value. b, Number of 
published stock assessments for oceanic sharks and rays over time.  
c, Presentation of 14 stocks of oceanic sharks (no available stock assessments 
for oceanic rays), status (biomass or abundance over value at MSY) versus 
pressure (F/FMSY) in a Kobe plot style, for the last year with available data.  
Circles represent the unique values of each species if only one stock exists and 

represent the mean of the values of the different stocks (diamonds) when the 
species has multiple stocks. The plot is divided into four panels: the red panel 
(top left), with four stocks and three species, corresponds to stocks that are 
being overfished and where overfishing is occurring; the orange panel (top 
right), with one stock and one species, corresponds to stocks that are not 
overfished but where overfishing is occurring; the yellow panel (bottom left), 
with four stocks and three species, corresponds to stocks that are overfished 
but where overfishing is not occurring; and the green panel (bottom right), 
with five stocks and one species, corresponds to stocks that are not overfished 
and where overfishing is not occurring.



Article

Extended Data Fig. 10 | Percentage of reported threat categories in the 31 
oceanic shark IUCN Red List assessments. ‘Biological resource use’ and, 
more specifically, ‘fishing and harvesting aquatic resources’ is the major 
reported threat.








	Half a century of global decline in oceanic sharks and rays

	Declining abundance index

	Increasing extinction risk

	Overfishing is the main threat to oceanic sharks

	Discussion

	Conclusion

	Online content

	﻿Fig. 1 Global LPI for 18 oceanic sharks estimated from 1970 to 2018.
	﻿Fig. 2 LPI for 18 oceanic sharks from 1970 to 2018 disaggregated for each of the oceans and traits.
	﻿Fig. 3 Increase in extinction risk of oceanic sharks.
	﻿Fig. 4 Attributing abundance declines to overfishing.
	Extended Data Fig. 1 Hierarchical building of the global LPI and RLI.
	Extended Data Fig. 2 Calculation of the LPI.
	﻿Extended Data Fig. 3 Global and species-specific LPI for oceanic sharks and rays from 1970 to 2018.
	Extended Data Fig. 4 Time-series output for Carcharhinidae.
	Extended Data Fig. 5 Time-series output for Sphyrnidae.
	Extended Data Fig. 6 Time-series output for Alopiidae.
	Extended Data Fig. 7 Time-series output for Lamnidae.
	Extended Data Fig. 8 Time-series output for Dasyatidae and Mobulidae.
	Extended Data Fig. 9 Stock assessments for oceanic sharks.
	Extended Data Fig. 10 Percentage of reported threat categories in the 31 oceanic shark IUCN Red List assessments.




